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ABSTRACT 

We deal wi th  ( n -  1)-generated modules  of s m o o t h  (analytic,  holomorphic)  

vector fields V = (X1 . . . . .  X n - 1 )  (codimension 1 differential sys tems)  de- 

fined locally on IR n or C n , and  ex tend  the  s t a n d a r d  dual i ty  (X1, �9 �9 �9 X n -  1 ) 

~-* (w), w = Q (XI . . . .  , Xn--1, ', ) (Q - -  a vo lume form) be tween V ' s  and  1- 

genera ted  modules  of  differential 1-forms (Pfaffian equat ions)  - -  when  the  

genera tors  Xi  are linearly independen t  - -  onto  subs tan t ia l ly  wider classes 

of  codimens ion  1 differential sys tems .  We prove t ha t  two codimens ion  1 

differential sy s t ems  V and ()~t . . . .  , ) f n - 1 )  are equivalent  if and  only if so 

are the  corresponding Pfaflian equat ions  (~0) and  (J~) provided t ha t  w has  

1-divis ion property:  w A # = O, p - -  any  1-form :=~ # = f w  for cer ta in  

funct ion germ f .  T h e  1-division proper ty  of w tu rns  out  to be equivalent  

to the  following proper t ies  of V: (a) f X  E V,  f - -  not  a ()-divisor funct ion  

germ =~ X E V (the div is ion  property);  (b) (V•  • = V; (c) V • = (w); 

(d) (w)• = V, where J_ denotes  the  pass ing from a module  (of vector fields 

or differential 1-forms) to its annihi la tor .  

* S u p p o r t e d  by  P o l i s h  K B N  g r a n t  N ~ 2 1090 91 01. 
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100-942.  
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1. I n t r o d u c t i o n .  M a i n  resu l t s  

We are interested in the local classification and geometry of singularities of 

codimension 1 differential systems. These are i n - 1)-generated modules V = 

(X1 . . . . .  X,~-I) of smooth (analytic, holomorphic) vector fields in the 

n-dimensional space R n or C ' ,  over the ring of smooth (analytic, holomorphic) 

functions. When the generators are pointwise linearly independent, we deal with 

codimension 1 distribution which can be equivalently described by a single non- 

vanishing Pfaffian equation W = (w), i.e., module of differential 1-forms gener- 

ated by one 1-form ~. The classification problems can then be parallelly formu- 

lated and investigated in either setting. Things change with admitting points at 

which the generators X 1 , . . . ,  X~- I  are linearly dependent. The passing to the 

language of Pfaffian equations then becomes questionable. 

Throughout  the paper we use the letter D to denote the class of differentiability. 

Namely, it will always denote either oo, or A, or H, that is to say - infinitely 

smooth (C~176 real analytic, and holomorphic, respectively. 

We denote by A~)(n) (respectively, VD(n)) the set of germs at zero of differential 

k-forms (respectively, vector fields) of class D on a neighbourhood of zero in R n 

or C TM. Then AkD(n) and VD(n) are modules over the ring h ~  of germs of 

functions of class D. 

Definition: By a local codimension i differential system of class D we understand 

a A~ (X1 , . . . ,  X~-I )  generated by n - 1 vector fields X 1 , . . . ,  X , - 1  E 

VD(n) which are independent on an open dense set of a neighbourhood of zero. 

We will use notation v ~ - l ( n )  for the set of all local codimension 1 differential 

systems. 

Definition: A local Pfaffian equation of class D is a A~(n)-module (w) generated 

by one 1-form w E A~(n). We will denote the set of all local Pfaffian equations 

by PD(n). 
Now we define a natural mapping from V~-l(n) to PD(n). 

Definition: Given a local codimension 1 differential system V = ( X b . . . ,  X , - 1 )  

of class D, we denote by i oV a local Pfaffian equation of class D generated by a 

1-form w �9 A~(n) defined by the relation w(-) = ~2 (X1 , . . . ,  Xn-x,  "), where ~ is 

an arbitrary local volume form of class D and the dot stands for any vector field 

of VD (n). 



Vol. 95, 1996 DIFFERENTIAL FORMS 413 

PROPOSITION 1.1: i is a well-defined mapping from V ~ - l ( n )  to PD(n). 

Proof." We have to prove that the choice of ~ and the choice of generators of 

V are irrelevant. The first is clear, and the second is a direct corollary of the 

following 

LEMMA 1.2 (see [JP, Appendix]): * Let M be an abstract module over A~ 

generated by elements a b . . . , a k  as well as by a l , . . . , a k .  Then there exists a 

k x k matrix H with entries in h~ det H(0) ~ 0, such that the tuple [51, . . . ,  Ski 

is obtained from [a l , . . . ,  ak] by right multiplication by H. 

Proo~ There exist matrix-valued functions A and B of class D such that 

[ a , , . . . ,  ak] = [51,. . . ,  5k]A and [a, . . . . .  ak] = [ a b . . . ,  ak]B. It follows that  

[ a l , . . . ,  ak] = [ a l , . . . ,  ak](B + (I  - B A ) C )  

for any k x k matrix C (I  is the unit matrix). For any two k x k matrices a and 

with real (complex) entries, and in particular for A(0) and B(0), there exists 

a matrix C with real (complex) entries such that the matrix ~ + (I - ~a)C is 

invertible (a proof of this simple fact can be found, for example, in [Mat]), and 

we can take H = B + (I  - BA)C.  | 

One of the central questions concerning the passing from codimension 1 

differential systems to Pfaffian equations is as follows: under what conditions 

on V E VI~-I(n) 

(1.1) V is D-equivalent to V E v ~ - l ( n )  if and only if 

i o V is D-equivalent to i o V. 

The equivalence of two local differential systems or two local Pfaffian equations 

is defined according to the general definition of the equivalence of any two sets 

of germs (of vector fields, 1-forms, functions) Q and Q. The D-equivalence of Q 

and (~ means the existence of a local diffeomorphism 4~ of class D such that 

brings any germ of Q to a germ of (~, and ~-1 brings any germ of (~ to a germ of 

Q. For the case where Q and Q are h~ there is another (equivalent) 

definition in terms of generators: 

* J. Mather [Mat], Proposition on p. 136, is the first to be credited for this lemma, 
although not in the present setting. 
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PROPOSITION 1.3 (see [Mat], [JP]): Two A~ A = ( a l , . . . , a k )  and 

-4 -- (51 , . . . ,  ak) (of germs of vector fields, differential 1-[orms, functions) are 

D-equivalent i f  and only if there exist a local diffeomorphism �9 of class D and a 

k x k matrix H with entries in A~ det H(O) # O, such that �9 brings the tuple 

[a, . . . .  , ak] to [51, . . . ,  ak]H. 

This Proposition is a corollary of Lemma 1.2. 

Our first result (Theorem 1.4) gives a condition on a generator of ioV under 

which (1.1) holds true. 

Definition: A germ at zero of a differential 1-form o; has 1-division property in 

h ~  if for any 1-form ~; �9 A})(n) such that o; A & = 0 there exists a function 

f �9 A~ such that ~ = fw.  

Note that the 1-division property of w is a property of the Pfaffian equation 

(w): by Lemma 1.2 all generators of a Pfattlan equation of class D have or have 

not 1-division property in A~ simultaneously. We will say that a Pfaffian 

equation (w) of class D has 1-division property if o~ has 1-division property in 

THEOREM 1.4: Let V �9 V ~ - t ( n )  and ioV = (w). Assume that w has 1-division 

property in A~ Then (1.1) holds. 

It turns out that  1-division property of ioV is equivalent to some other impor- 

tant properties formulated in Theorem 1.5. In the formulation of these properties 

we use the operation _L: given a set Q of germs of vector fields (differential 1- 

forms) of class D, we denote by Qa_ the set of germs of differential 1-forms (vector 

fields) of class D annihilating all vector fields (annihilated by all 1-forms) from 

Q. 

THEOREM 1.5 (MAIN THEOREM): Let V �9 V~- l (n ) ,  ioV = (w). The following 

properties of  V are equivalent: 

(a )  = v, 
(b) (w) = V • 

(c) (v•  • = v ,  

(d) (the divis ion  p r o p e r t y  of V): i f ]  �9 A~ is not a O-divisor, X �9 VD(n) 

a n d f X � 9 1 4 9  

(e) w has I-division property in A~ 
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Theorem 1.4 is a simple corollary of Main Theorem. In fact, take V E V~ -1 (n), 

and let ioV = (a;). Assume that V satisfies the condition of Theorem 1.4, i.e., 

(e) holds. Take any i e V~)-l(n) such that i o i  = (~b). By Main Theorem V 

and i satisfy (a), that is, (w)• = V, (~b) • = 1~'. These relations imply Theorem 

1.4 since the D-equivalence of any two sets of germs of vector fields or differential 

1-forms implies the D-equivalence of their annihilators (via the inverse of the 

local diffeomorphism giving the former equivalence). 

The 1-division property of ioV implies one more property of V - -  the maxi- 

reality. 

THEOREM 1.6: Let V �9 V~-l (n) ,  ioV = (w). Assume that w has l-division 

property in A~ Then V is not included in any module (,1 �9 Vi~-l(n). 

This Theorem is also a simple corollary of Main Theorem. Assume that V C 

i ,  i E Vl~-X(n). Then at a generic point x (such that d imV(x)  = n - 1) 

V(x) = i ( x ) ,  and therefore if(x) C kerw[~. It follows that ~[~ annihilates any 

vector of i ( x )  for any point x, i.e., i c (w)• By Main Theorem (w)• = V, 

and we obtain V = i .  

By Main Theorem each of the properties (a) through (e) implies the maximality 

of V. The inverse is not true: there are maximal differential systems V �9 V~ -1 (n) 

violating each of (a) - (e). 

Example: Consider a differential system 

V : X 1 "4- X 3 - - ,  X 2 - -  + X3 �9 V~(3). 
Ox2 Oxl 

The Pfaffian equation ioV is generated by the 1-form xa(xadxl - x l d x 2  -x2dx3).  

This 1-form has no 1-division property, and by Main Theorem each of the con- 

ditions (a) - (e) is violated. Nevertheless, one can prove that  V is maximal. 

In view Theorems 1.4 - 1.6 it is relevant to know how to check whether a 

1-form w has 1-division property. Corresponding results are given (with proofs) 

in the next section. These results allow us to prove that the germ at any point of 

a generic (n - 1)-generated module of vector fields on an n-dimensional manifold 

satisfies the properties (a) - (e) formulated in Main Theorem (section 3). In 

section 4 we fully characterize which Pfaffian equations come out as i o V, where 

V is a codimension 1 differential system having the simplest degeneration at 

0 - -  the dropping of dimension by 1. Main Theorem is proved in section 5. 
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Finally, in section 6 are presented some instances of specific applicability of the 

developed methods to classification of involutive distributions with singularities 

and geometric properties of global generic codimension 1 differential systems. 

ACKNOWLEDGEMENT: The authors thank the referee of the paper whose ques- 

tions have led to essential improvements of the first version. 

2. 1-Division property 

In this section we use the technique of [Mou, ch.1] where the division property 

of 1-forms is studied. The division property of w is stronger than the 1-division 

property; it means that for any k = 1 , . . . ,  n - 1 and any differential k-form T/ 

such that w A 7/= 0 there exists a (k - 1)-form 0 such that  ~/= ~ A 0. 

At first we associate, to any 1-form w E A~)(n), an ideal I(w) in A~ and 

show that the 1-division property of ~ is a property of I(,~). 

Let ~ c A~)(n). Take any local coordinate system x = ( x l , . . . x n )  of class D. 

In this coordinate system w = f l ( x )dx l  + . . .  + fn(x)dx,~. Denote by I(w) the 

ideal in A~ generated by f l ( x ) , . . . ,  f~(x).  

PROPOSITION 2.1: 

(i) The ideal I(w) is invariantly related to ~, i.e., does not depend on a 

coordinate system. 

(ii) Assume that the ideals I(w) and I(&) are D-equivalent. Then w and r 

have or have not 1-division property in A~ simultaneously. 

Proof: (i) Let ] l ( x ) , . . . ,  fn(x)  be the coefficients of ~ in a coordinate system x 

of class D, I(w) = ( f l ( x ) , . . . ,  f~(x)) .  Let y be another coordinate system related 

to the coordinate system x via a local diffeomorphism r of class D: x = ~(y). The 

tuple of the coefficients of ~*w is equal to [ f l (~ (y ) ) , . . . ,  fn(r  Since 

~'(y) is invertible, I(4~*w) is generated by functions f l (d~(y)) , . . . ,  ],~(~(y)) and 

we see that  I(~*w) = qh*I(w). 

(ii) It is easy to verify that if ~ = f l ( x )dx l  + . . .  + .f~(x)dx,~ E A~)(n) has 

1-division property in A~(n) then: 

(a) for any n x n  matrix H(x)  with entries in A~ and such that det H(0) r 0, 

the 1-form with the tuple of coefficients [ f l ( x ) , . . . ,  f,~(x)]H(x) has 1-division 

property in A~ 

Here, for certain ~, I(&) = ~*I(w) = I(4~*~) (by (i)). On applying Lemma 

1.2 to this ideal, and using (a) for ~*w, (ii) follows. | 
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THEOREM 2.2: 

(1) Let D = A or H. The 1-division property of  w E A~(n) in A~ is 

equivalent to the following property: 

(f) the formal series of  the coett~cients of  ~; in some (and then any) coordinate 

system have no common factor with zero free term. 

(2) Let ~ E A~(n) .  Assume that I(w) is smoothly  equivalent to an ideal in 

A ~  generated by analytic germs.* Then the 1-division property o f t  in 

A ~  is equivalent to (f). 

This theorem implies the following corollary for codimension 1 differential 

systems. 

THEOREM 2.3 (corollary of Theorem 2.2 and Main Theorem): Let V E V ~ - l ( n )  

and ioV = (w). 

(1) I f  D = A or H then the properties (a) - (e) formulated in Main Theorem 

are equivalent to (f). 

(2) I f  D = oc and I(w) is smoothly  equivalent to an ideal in A ~  generated 

by analytic germs then the properties (a) - (e) are equivalent to (f). 

The second statements of Theorems 2.2 and 2.3 are not true for arbitrary 

codimension 1 differential systems: 

Example: see [Mou]. Let A = e  -1/x~, B = x 2 ,  w = A d x l + B d x 2  E A~(n) .  

The formal series of the coefficients of w have non-trivial common factor x2, but 

it is easy to check that w has 1-division property. Note now that (w) --i oV where 

v c v = - B - -  ~ o o o=l ' o - 3 , ' " ,  a ~  )' By Main Theorem V satisfies 

(a) through (e), but w does not satisfy (f). 

OPEN QUESTION: We do n o t  know whether (f) implies 1-division property in 

A ~  for arbitrary 1-form w E A~(n) .  

Proof of Theorem 2.2: Fix a coordinate system x = ( x l , . . . , x n ) .  Denote by 

A~ (respectively A~ the ring of formal series in x , , . . . , x n  with real 

(respectively complex) coefficients. Let F = FR or PC. By Ak.(n) we denote 

the module of differential k-forms with coefficients in A~ We will say that  

w E A~(n) has 1-division property in A~ if for any 1-form 5; E A~(n) such 

that o: A & = 0 there exists a formal series q E A~ such that & = qw. 

* This property does not hold only for ideals of a codimension oo subset in the set 
of all n-generated ideals; see [Mall. 



418 P. MORMUL AND M. ZHITOMIRSKII Isr. J. Math. 

Given a germ ] = f ( x )  E A~ we will denote by ] its formal series; given a 

1-form w = f l ( x ) d x l  + . . .  + f,~(x)dxn, ]i E A~ we will denote by & a 1-form 

] ldx l  + ' "  + s  E A~.(n) (F = FR if D = A, oc; F = FC if D = H). We 

will say that a 1-form w E A~)(n) has 1-division p r o p e r t y  in A~(n) if & has 

1-division property in A~ 

The first statement of Theorem 2.2 is a corollary of the two following Lemmas: 

LEMMA 2.4: Let D = A or H. A /-form w E A~)(n) has 1-division property 

in A~ i f  and only i f  it has 1-division property in A~ (F = FR i f  D = A, 

F = FC i f  V = H). 

LEMMA 2.5: Let F = FR or FC, w = ql(X)dxx + . . .  + qn(x)dxn E Al(n) .  Then 

o~ has 1-division property in A~(n) if and only if  the formal series q l , . . . ,  q,~ have 

no non-trivial common factor (i.e., common factor with zero free term). 

Proof  of  Lemma 2.4: (i) At first assume that w E A~)(n) has 1-division property 

inA~(n) .  Take any 1-form~ e A l (n )  such that w A ~  = 0. T h e n & A 0  = 0, 

and therefore there exists q E A~(n) such that 7) = q&. We use the following 

property of analytic and holomorphic function germs: if A and B are analytic 

(holomorphic) function germs and the formal series of A is divisible by a formal 

series of B, then A is divisible by B, and A / B  is an analytic (holomorphic) 

function germ. By this property q is the formal series of an analytic (holomorphic) 

function germ, whence the 1-division property of w in A~)(n). 

(ii) Now we prove that if w E A~)(n) has 1-division property in A~ then it 

has 1-division property in A~ 1-division property in A~)(n) means that  the 

sequence 

(2.1) A~ ^~, A~(n) ^~, A2(n) 

is exact. We have to prove the exactness of the sequence 

(2.2) A~ ~ Al(n)  ^~, A2(n). 

The exactness of (2.2) follows from that of (2.1) since the ring A~ is fiat over 

the ring A~ see [Mal]. I 

Proof  of Lemma 2.5: (i) If the formal series q l , - - . ,  q,~ have non-trivial common 

factor q t h e n w  = qr/, 71 E A~(n), a n d w ^ ~ /  = 0. Assuming that 77 = "rw, 

"r E A~ we obtain that (q'r - 1)w = 0, which is only possible if w = 0 (since 
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the formal series q7 has the free term -1 ) .  The contradiction shows that  w does 

not have 1-division property in A~ 

(ii) Assume now that  the formal series q l , . . . ,  qn have no non-trivial common 

factor. Without lost of generality we can assume that  ql ~ 0. Take any 1-form 

r~ = qldxl + "  .+~,~dx,~ E Al(n)  such that  war/ = 0. Take any formal series 0 with 

zero free term which is an irreducible factor of ql. There exists j E {2 , . . . ,  n} 

such that  0 is not a factor of qj. Since ql(lj = qjfh, the series 0 is a factor of ql 

(because in the ring of formal series every irreducible factor is prime; see [Mal]). 

It means that  any irreducible factor of ql is a factor of qi. The ring of formal 

series is factorial (see [Mal]), therefore ql = 7ql for some formal series 7. The 

relations q l q j  -~ qjql imply Oj = 7qj, 7 E A~ j = 1 , . . . , n ,  i.e. 7/ = 7w, 

whence the 1-division property of w in A~ | 

The first s tatement of Theorem 2.2 is proved. The second statement can be 

reduced, due to Proposition 2.1, to the following 

LEMMA 2.6: Let w E A~(n). Then w has 1-division property in A~ i f  and 

only if  it has 1-division property in A ~  

The proof is exactly the same as that  of Lemma 2.4; we use the flatness of the 

ring A ~  over the ring A~ see [Mal]. 

3. G e n e r i c  c o d i m e n s i o n  1 d i f f e ren t i a l  s y s t e m s  on  a m a n i f o l d  

Properties (a) - (e) formulated in Main Theorem hold, of course, for generic 

germs V ~ V ~ - l ( n )  (a generic germ V is generated by pointwise independent 

vector fields). One can expect that  they also hold for any germ of a generic 

globally defined codimension 1 differential system. The following theorem says 

that  it is true. 

THEOREM 3.1: In the space of  all (n - 1)-tuples of  global vector fields of class 

D on an n-manifold M there exists an open dense set such that for any tuple 

[X1, . . . ,  X,~-I] in this set and for any p E M the local differential system V 

generated by germs of X 1 , . . . ,  X~_ 1 at  p satisfies (a) - (e). 

The main tool to prove this theorem is the following 

LEMMA 3.2: Let IX1 , . . . ,  Xn-1] be a generic tuple of  vector fields of  class D on 

an n-manifold M. Let p E M,  and let 

(3.1) k = n - 1 - d imspan (X~ . . . .  ,X , ,_ , ) (p)  > 1. 



420 P. MORMUL AND M. ZHITOMIRSKII Isr. J. Math. 

Let V be a local codimension 1 differential system of class D generated by germs 

at  p of X1,..., ., X , - I .  There exist generators Y1, . - . ,  Y~-I  of V and a coordinate 

system of class D near p such that 

Yi = ~ - .  + bi,,(x) , i = l , . . . , n - k - 1 ,  
8~-n--k 

(3.2) 

= 
0 

aJ,,( x )-~x ~ , j = n - k , . . . , n - 1 ,  

where the k( k + I)  function germs aj,, are differentially independent. 

Proof." It is easy to see that  any local codimension I differential system satisfying 

(3.1) admits a tuple of generators of the form (3.2). Here the degeneration "n - 1 

vectors span a linear space of dimension n - 1 - k" has codimension k(k + 1) (by 

the Corank Product  lemma; see [AGV]), and we can exclude typically all such 

k that  k(k + 1) > n (by Transversality theorem, [AGV]). Now the degeneration 

"k(k + 1) algebraic 1-forms are dependent" has codimension n + 1 - k(k + 1), and 

the degeneration violating the conclusion of the lemma has codimension n + 1. 

To conclude the proof we can again use Transversality theorem. II 

Proof of Theorem 3.1: Let f~ be the standard volume form dxl A . . .  A dx,~. 

In view of Lemma 3.2 and Main Theorem, it suffices to prove that  the 1-form 

a~ = f~ (]1"1 . . . .  , Yn-1, ") has 1-division property in A~ Let f l  . . . .  , fn be the 

coefficients of w. Note that  the 1-division property of w follows from that  of 

frdxr + f~dx~, where r, s is any pair of different indices provided that  f r  is not 

a 0-divisor in A~ In fact, if w A r = 0, where & = ] ldx l  + ' . .  + ]ndx,~, 

then (f~dxr + f~dx~) A (]~dxr + ]~dx~) = 0, and the 1-division property of 

f~dx,  + f ,  dx~ implies that  ]~ = hfr for a certain function h 6 A~ Now the 

relations f~]i = f J , ,  i = 1 , . . . ,  n imply f,(g; - hw) = 0, and, since f~ is not a 

0-divisor, r = hw which means the 1-division property of w. 

We will check that  the 1-form # = f,~-kdx,,-k + ]ndx ,  has 1-division prop- 

erty and its coefficients are not 0-divisors; by the observation above it implies 

Theorem 3.1. The differential independence of aj,~ implies the existence of a 

D-diffeomorphism �9 such that  

. . . .  = 

Then f , -k(@) and f,~(4f) are certain polynomials P, and /'2. Therefore f , - k  

and f ,  are not 0-divisors; it remains to check the 1-division property of/~. By 
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Theorem 2.2 it suffices to show that  PI and P2 have no common non-trivial factor 

within formal series. The latter can be easily checked for arbi t rary n and k (for 

example, if n = 6, k = 2 then P1 = x 2 x 6  - x 3 x 5 ,  and P2 --- XlX5 - x2x4). | 

4. D e s c r i p t i o n  o f  Im i 

When the dimension of a module V at the origin drops by two or more then 

the image of i seems to be fairly complicated. On the other hand, it is possible 

to describe Pfaffian equations coming in this way from modules having the first 

occurring singularities - -  when dim V(0) = n - 2. 

THEOREM 4.1: 

(i) For any V E V ~ - l ( n )  such that dimV(0)  = n - 2 there exist linearly 

independent Wl, w2 E A~(n) and function germs f l ,  f2 E A~ such that 

(4.1) i o v = (f1~1 + f2 ~ ) ,  

(4.2) 

If1[ 2 + [f2[ 2 ~ 0 on an open dense subset of  a neighbourhood of  zero. 

(ii) Let f l ,  f2 E A~ be germs satisfying (4.2), wl and ~ be independent 

1-forms in A~)(n). There exists V E V ~ - l ( n )  such that dimV(0)  = n - 2 

and (4.1) holds. 

Proof'. (i) Take a submodule V of V generated by n - 2 pointwise independent 

vector fields. There exist two independent at 0 differential 1-forms wl,w2 E 

A~)(n) such that  i f•  = (wl,w2). Then V • C (wx,w2), and, all the more so, 

ioV C (aJl, w2). Therefore (4.1) holds with some functions f l ,  f2 E A~ These 

functions satisfy (4.2), since the generators of V are independent on an open dense 

subset of a neighbourhood of zero (by the definition of codimension 1 differential 

system). 

(ii) The set of all vector fields annihilated by col and co2 is an (n - 2)-generated 

module ( ] I1 , . . . ,  Yn-2), Y1, . - . ,  Yn-2 independent at 0 vector fields. Let Z1 and 

Z2 complete Y1, �9 �9 Y,~-2 to a basis, and be such that  w~(Zj) = 6ij (the Kronecker 

delta). Put  X := f2Z1 - f lZ2 .  Take arbitrary local volume form ~2 of class D 

and put  

f / (Y1 , . . . ,  Yn-2, Z1, Z2) '  

= f i ( v l , . . . , Y , - 2 , x , . ) .  
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Then 

Therefore 

~(Y/)  : ( f lco l  -'[- f2 co2)(Y/) = 0, i = 1 , . . .  , n  - 2 ,  

&(Zj) = ( f lwl  + f 2 c o 2 ) ( Z j )  = f j ,  j = 1 ,2 .  

=/1col + /2  co2, 

whence (4.1) holds with V = (Y1,. �9 Y,,-2, X). By (4.2), V is a local codimension 

1 differential system. | 

In view of Theorem 4.1 it is relevant to give a condition - -  on a couple [f, g] 

- -  for a 1-form co = fw l  + g w2 to have 1-division property. 

We will say that a couple [fl, f2] e (A~ 2 has 1-division property in hE(n ) 

if the relation fl]~ = f211, [fl, ]2] e (h~ 2 implies the existence of "r e A~ 

such that []1,]2] = "rill,f2]. If D = A,H or D = oc and the ideal ( f l , f2)  

is smoothly equivalent to an ideal generated by analytic function germs, then 

by Theorem 2.2 the 1-division property of If1, f2] in A~(n) is equivalent to the 

property "the formal series of f l  and f2 have no common factor with zero free 

term". 

P R O P O S I T I O N  4.2: Let col, w2 �9 A~3(n) be independent 1-forms, f l ,  f2 �9 h ~  

be functions satisfying (4.2). The 1-form co = flcol+f2 w2 has 1-division property 

in A~ if  and only i f  the couple [fl, f2] has 1-division property in A~(n). 

Proo~ (i) Assume that  If1, f2] has 1-division property. We have to prove the 

1-division property of w. Let # be a 1-form such that 

(4.3) co A # = 0. 

Take vector fields Za, Z2 E VD(n) such that wi(Zj)  = 6ij. Then, substituting 

Zx, Z2 into (4.3) we have fl#(Z2) = f2 #(Z1), and it follows from the 1-division 

property of [fl, f2] that  #(Z2) = f l  "r and #(Z1) = f2 7 for some function germ 

"r E A~ Using this, by substitution of only Z2 into (4.3) we obtain f2 (# - 

7 w) = 0. Similarly, substituting Z1 into (4.3) we obtain f l  (P - "r w) = 0. It 

follows from (4.2) that  # = "r w, whence the 1-division property of w. 

(ii) Assume now that w has 1-division property. To show that If1, f2] has 

1-division property take any tuple [s  2~] such that f I •  = f2• and put cb := 

]1wl + ]2 w2. Then w h ~ = 0, and ~ = "r w for some function germ % Since 

wl and w2 are independent, we obtain [fl, f2] = "r If1, f2], whence the 1-division 

property of [fl, f2]. m 
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5. P r o o f  of  M a i n  T h e o r e m  

The scheme of the proof  is as follows: 

(b) :~ (e) ~ (a) =~ (c) ~ (d) ::~ (e) =~ (b). 

The implications ( b ) ~ ( e ) ,  (a)=~(c), (c)=v(d) and (e)=~(b) are almost obvious, 

and we begin with them. 

(b):~(e).  Assume that  # E A~)(n) and w A p = 0. Take arbi t rary  X E V. 

Then # ( X ) w  = 0, and - -  since w does not vanish on an open dense set of a 

neighbourhood of zero - -  we obtain tha t  # ( X )  = 0. It  means tha t  # E V • By 

(b) # E (~), i.e., # = fw  for a certain function f E A~  

(a)=v(c). Note tha t  V C (V•  • under no assumptions.  Also, (w) C V • (under 

no assumptions),  whence (V•  • C (w) • = V. 

( c ) ~ ( d ) .  Let f X  E V, f not a 0-divisor. Then  I.t(fX) = 0 for any tt E V z .  

Since f is not  a 0-divisor, /~(X) = 0, i.e., X E (VZ) • = V. 

(e)=~(b). (w) C V • under no assumptions. We have to prove tha t  V • C (w). 

Take # E V • The 2-form w A # vanishes at any point x such tha t  dim V(x)  = 

n - 1. Consequently, w A # = 0, and by (e)/z E (w). 

Now we prove the implication (e)=~(a). 

We have to  prove tha t  if X E (w)• then X E V. Take any volume form ~ of 

class D and define the following 1-forms: 

wl = ~ (X~, X3, . . . ,  Xn-1 ,  X,  .), 

w2 = f l ( X I , X 3 , . . . , X , ~ - I , X , . ) ,  

w ,_ l  = ~ ( X I , X 2 , . . . , X n _ ~ , X , . ) ,  

where X 1 , . . . ,  Xn-1 are generators of V. It  is easy to check tha t  (w/ko.Ji)(Xj, ") = 

0 for any i, j = 1 , . . . ,  n - 1 .  The vector fields X I , . . . ,  X,~-I are independent on an 

open dense set in a neighbourhood of zero, therefore w A a~i = 0, i = 1 , . . . ,  n - 1. 

By 1-division proper ty  there exist functions f l , . . . ,  f,~-I of class D such tha t  

~oi = fiw. Consider a vector field 2 = X + ( - 1 ) n - l  f iX1  + ( - 1 ) ~ - 2 f 2 X 2  + . . .  

- f ,~ - lXn-1 .  Define 2-forms 

01 =- fl(X2, Xa , . . .  ,Xn_l , . , - ) ,  

02 = fl (X1, Xs , .  �9 X n - 1 , . ,  "), 

0,,-1 = a (Xl ,  X 2 , . . . ,  X , , - 2 , . , - ) .  
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Compu te  

(5.1) Oi(X, ") = Oi(X, ") + ( - 1 ) " - i f i o i ( x i ,  ") = wi - fiw = O. 

If  p is a generic point  of a ne ighbourhood of zero then 0i (p) is a non-zero algebraic 

2-form with  the kernel span(X1 . . . . .  X i -1 ,  Xi+ l  . . . .  , X,~-I) (p) .  The  intersect ion 

of these kernels is {0}, hence, by ( 5 . 1 ) , ) ( ( p )  = 0. Therefore  ){ = 0, tha t  is, 

X E V .  

I t  remains  to prove the implicat ion ( d ) ~ ( e ) .  Let w/~/z = O, p E A~(n) .  Then  

(5.2) w A # ( Z ,  .) = w(Z)#  - ~ (Z )w  = 0 V vector  field Z. 

Since w does not vanish at  a generic point  of a ne ighbourhood of zero there exists 

a vector  field Z such tha t  f = w(Z) r 0 at  a generic point  of a ne ighbourhood 

of zero. Let  g : = # (Z) .  Relat ion (5.2) assumes the form 

(5.3) f #  = 9w. 

Our  a im is to just ify 

LEMMA 5.1: g is divisible by f i n  h ~  

On assuming this claim, the rest of the reasoning (d)=~(e) is s t raightforward:  

there exists a function ~ E A ~  such tha t  g = ~ f ,  so tha t  (5.3) takes the form 

f ( p  - ~w)  = O. Since f does not vanish at a generic point  of a ne ighbourhood 

of zero we obta in  # - ~ w = 0, so w has 1-division property.  

Proof of  Lemma 5.1: The  main  tool is the following known identi ty valid for 

any vector  fields Z 1 , . . . ,  Z,~+I on R n or C n (~2 - -  any volume form) 

f l (Z1, . . . ,  Z,)Z,+~ - f l ( & , . . . ,  Z ,_ l ,  Z,+l)Z, 

( 5 . 4 )  + ~"~(Z1, . . .  , Zn_2, Zn, Zn+l)Zn_ 1 . . . .  

+ ( - 1 ) " 9 / ( Z 2 , . . . ,  Z,~+I) Z1 = 0. 

At first we apply  this identi ty to the vector  fields gX1, X 2 , . . . ,  Xn-x ,  vl, v2, where 

vl and v2 are a rb i t r a ry  vector  fields. In this way we get gw(vl)v= - g w ( v 2 ) V l  E 

( X 1 , . . . ,  X,~-I) ,  i.e., by (5.3) f p  (va) v2 - f ~  (v2) Vl E ( X l , . . . ,  X,~-I) .  P u t t i n g  

Q := #(vx)v= - p (v2 )v l ,  we have f Q  E ( X 1 , . . . , X , _ l ) .  The  function f is not  

a 0-divisor, and  by hypothesis  (d) Q E ( X 1 , . . . ,  X,~- l ) ,  i.e., Q = r lX1 + . . .  + 
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r ~ - l X ~ - i  for some functions r l , . . . ,  rn-1 of class D; hence f Q  = f r l X 1  + . . .  + 

f r , - l X n - 1 .  But f Q  has another expression resulting from (5.4), being also a 

linear combination of the generators of V. In particular, comparing coefficients 

at X~-I  we get ~ (gX1, X 2 , . . . ,  X~-2,  Vl, v2) = - f  r~ - i  at at a generic point of 

a neighbourhood of zero. Hence this equality holds in a full neighbourhood of 

zero, i.e. 

(5.5) 
~-~ (gX1, X 2 , - -  -, Xn-2,  Vl, ?J2) is d iv i s ib le  by f in A~(n) 

for every vector fields Vl, v2. 

We take now arbitrary vector field v3 and apply (5.4) to the vector fields 

g X b  X2, �9 �9 �9 Xn-2,  vl, v2, v3, 

knowing by (5.5) that all the functions ~ (gX1, X2, . . . ,  Xn-2, vi, V)), ] ~_ i < j < 

3 are divisible by f in A~ Using the same arguments as previously, it follows 

that all ~ (gX1, X 2 , . . . ,  Xn-3 ,  vl, v2, v3) are divisible by f in A~ Repeating 

this procedure and increasing in each step the number of v's, we eventually deal 

with vector fields gX1, v l , . . . ,  v,~ and get that f~(Vl, �9 �9 v,~) g is divisible by f .  On 

taking independent vector fields v l , . . . ,  vn, and having the factor ~ ( v l , . . . ,  vn) 

invertible, the lemma is proved. | 

6. Application of the Pfaffian equation language to geometry of  vector 

fields' modules  

We are going to demonstrate some instances of those applications. In use will 

be the geometric locus of singularities of a given (n - 1)-generated module V 

of vector fields on a C ~ manifold M '~ of dimension n, Mdeg(V) := {p E M n I 

dim V(p) < n - 1}, as well as another important singularity set associated to V 

via its Pfaffian equation (w) = i o V, M~in~(V) : = {p E M '~ 1 w A (d~)k[ v = 0}, 

where k --- [ ~ ] .  Note that Mdeg(V) C M~ing(V) and outside Msing(V), V 

defines a contact (if n is odd) or quasicontact (if n is even) structure, i.e., generic 

(of course, nonintegrable)field of hyperplanes (see [AGi], [Ma]). 

The structure of the set Mslng(V) depends on the dimension n. For example, if 

n = 3 then Msing(V) is a smooth surface and Mdeg(V) is a smooth curve provided 

that V is generated by generic vector fields; see [JP]. If n = 4 then Mdeg(V) is a 

smooth 2-surface, while M~ing(V) is a stratified manifold; the s t ra ta  are Mdeg(V) 
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and a curve intersecting Mdeg(V) at isolated points. If n _> 5 then the structure 

of Msi,g(V) is more complicated; see [MZh]. 

In most cases the passing to the Pfaffian equation allows one to obtain these 

and other results on singularities of codimension 1 differential systems much more 

effectively than using the language of vector fields only. As an example we give 

here a proof of the following result. 

THEOREM 6.1 ([JP], 5.2, (3)): Let V be a generic smooth codimension 1 differ- 

ential system on a 3-manifold, p a generic point of Males(V). Then the germ of 

V at p is equivalent to 

0 z O 
(6.1) ( ~ x '  X O z - O y y ) "  

Using the passing V ~ i o V = (w), the genericness conditions of [JP] can be 

formulated as follows: 

(1) jlp(W A dw) ~ 0 and, therefore, Msi,g(V) is a smooth surface near p and 

d (v) # 0; 
(2) kerdw(p) is transversal to M,i,g(V). 

Proof of Theorem 6.1: We first normalize w. Since dw(p) ~ 0, we can use 

Darboux theorem and reduce the germ of w at p to the form xdy + dH(x, y, z) 

where j~H = 0, p = (0, 0, 0). In these coordinates Msing(V) ---- {"~z0H : 0} ,  

and kerdw = ( o ) .  It follows from (1) and (2) that ~-~H(0) 7~ 0. By a change 

of the coordinate z (and multiplying, if necessary, by - 1 )  H can be reduced 

to z 2 + h(z, y) (we use the Morse lemma with parameters, see [AGV]), whence 

w is reducible to the form zdz + &, where & = A(x, y)dx + B(x, y)dy. Since 

dim V(p) = 1 (otherwise j~,w = 0), there exists a vector field v, such that  v(p) 7~ 0 

and w(v) = 0. Let 

v = + + 

Then 

(6 .2 )  a(x, y, z)A(x, y) + b(x, y, z)B(x, y) + zc(x, y, z) = O. 

As A(0) = B(0) = 0, it follows that c(0) = 0, and, since now Msi.~(V) = {z = 0}, 

we obtain that v(p) E TpM, i,,g(V) (this phenomenon is called in [JP] a strange 
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typical nongenericness). Substituting z = 0 in (6.2) we obtain a(x, y, O)A(x, y)-4- 

b(x, y, O)B(x, y) - O. Since v(p) # 0 and c(0) -- 0, either a(0) # 0 or b(0) ~ 0. 

Therefore r -= f ( x ,  y)O, where f is a function vanishing at p and 0 is a 1-form, 

O(p) # O. Now we can reduce & to the form g(x,y)dy,  and -- since d&(p) # 0 - 

to xdy. Thus (~) is equivalent to (zdz + xdy). The form zdz + xdy has 1-division 

property and, by Theorem 1.4, V is equivalent to ( zdz+xdy)•  = ( 0 ,  x o_z_~) .o  
| 

The mentioned massing can also be effectively applied to involutive distri- 

butions. Under the involutive distribution we understand any k-generated Lie 

algebra of vector fields, i.e., a module V = (X1 , . . . ,  Xk) closed with respect to 

the Lie bracket: [X~, Xj] �9 V, i, j = 1 , . . . ,  k. Results of the present paper  are in 

particular applicable to the transition from involutive distributions of codimen- 

sion 1 (k = n - 1) to integrable 1-forms (forms w such that  w A dw = 0). Within 

the scope of the division property, the classification of one kind of these objects 

reduces to the classification of the other kind of objects. 

Consider, for example, a codimension 1 involutive distribution V of class D 

generated by vector fields X 1 , . . . , X n - 1  on R ~ with independent 1-jets of the 

form 
0 0 

j l x ~  = Ailxi ~ + . . .  + Ai,~x,~ Ox---~' 

i = 1 , . . .  , n -  1. Then the Pfaffian equation (w) := i o V  is generated by a 1-form 

aJ such that  

j ~ - l w  = a l x 2 x 3 " "  x,~ dxl + a 2 x l x 3 . . . x ,  dx2 + . . .  + a n x l x 2 " "  xn-1 dxn 

(so-called logarithmic 1-form, cf. [CeLN], [CaLN]), where the vector [ah ..., a~] # 

0 is orthogonal to the vectors [All, �9 �9 Air], i = 1 , . . . ,  n -  1. Under the condition 

ai # 0, i = 1 , . . . ,  n w has 1-division property in A~ (one can use Theorem 

2.2). Therefore, by Theorem 1.4, within this case, the classification of V's boils 

down to that  of the respective Pfaffian equations. 

For instance, under certain extra genericness conditions on a l , . . . ,  an, ~ is D- 

�9 ,,-1 (see [CeLN]). This together with the results of the present equivalent to 30 w 

paper imply that  under those conditions on al  . . . .  , a . ,  V is equivalent to j~V. 

That  is to say, in suitable coordinates V is then generated by linear diagonal 

vector fields. 
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